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Abstract

The application of advanced computational analysis to medical imaging 
opens a plethora of opportunities in the field of radiology, allowing for 
more accurate tissue characterization and, eventually, advancing towards 
precision medicine through imaging biomarkers. In this review, we briefly 
introduce the methodology for radiomics analysis and the main challenges 
for implementation of radiomics-based tools in clinical practice. Based on 
systematic review of published studies, we also summarize here the main 
advances regarding CT-based radiomics applications in renal cancer with 
regards to tumor characterization (diagnosis, grading, prognosis), gene 
expression prediction (radiogenomics) and response evaluation.

General Introduction of Radiomics Analysis
Rapid CT image acquisition during various phases of contrast 

enhancement is routinely used as a non-invasive method of 
diagnosis and staging of renal tumors1, 2. Radiological characteristics 
provide valuable information but are subject to the reader’s image 
interpretation. Recently established, the field of quantitative imaging 
(radiomics) utilizes a large set of imaging features automatically 
computed from segmented volumes-of-interest (VOI) for building 
different diagnostic and prognostic models, which can surpass 
standard practice3-5.

In the last two decades, the treatment landscape of renal cell 
carcinoma (RCC) has been revolutionized by developing novel 
therapeutic agents, now available in clinical practice. As a consequence, 
personalized care has become a critical part of developing effective 
treatment guidelines and improving patient outcomes. Emerging 
research reveals associations between radiomics features and gene 
expression, which potentiate identification of promising imaging 
markers for treatment response prediction6-10.

Imaging modality and VOI definition
Radiomics can be applied to different medical imaging 

modalities, however, we focus on computed tomography (CT), by 
far the most extensively used imaging technique in clinical practice. 
It facilitates volumetric and longitudinal assessment of radiological 
tissue densities and provides information on tumor enhancement 
distribution after contrast application. Radiomics uses manual or 
(semi-)automatic VOI segmentation, which allows the analysis of 
the most informative location (usually encompassing the entire 
tumor volume), while tumor sub-volume (e.g., periphery) or healthy 
tissue could also be analyzed. 
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Feature extraction
To date, the most common radiomics models applied to 

the renal cancer field are based on pre-designed features 
(also referred to as hand-crafted or engineered features). 
Nevertheless, recent advancements in deep learning have 
caused trends towards deep learning-based radiomics, 
which are beyond the scope of this review.

Hand-crafted radiomics features allow quantification of 
different tissue characteristics, which can be divided into 
different classes, i.e., morphological features (shape-based) 
and first-order (histogram-based), and second order and 
higher order distribution (texture-based features). For 
instance, texture-based features are most frequently used in 
radiomics studies differentiating renal lesion subtypes4, 5, 11.

Modelling
The number of hand-crafted radiomics features 

can be high (ranging from 4 to 1872012), which would 
result in an overfitted model with poor generalizability. 
Therefore, only a subset of extracted features is used to 
effectively build a radiomics model. This can be achieved 
with feature selection techniques that remove redundant, 
highly correlated features (e.g., based on correlation or 
clustering) and/or by selecting the most informative 
features based on the target outcome (e.g., Least Absolute 
Shrinkage and Selection Operator (LASSO) regression, 
Minimum Redundancy Maximum Relevance (mRMR) or 
decision trees). Features that are reproducible and robust 
against different sources of data variability related to 
image acquisition or VOI segmentation are usually selected 
using a correlation score, such as Concordance Correlation 
Coefficient (CCC) or Intraclass Correlation Coefficient (ICC). 

Different models are employed in radiomics 
applications; the most popular include regression models, 
random forest (RF) and support vector machine (SVM). 
Multiple-model creation is desirable, but not essential, as 
long as the methodology is well-reported, available and 
can be easily reproduced. It is also crucial to evaluate the 
radiomics model performance using internal and ideally 
external validation. The model performance is typically 
measured using the receiver operating characteristic (ROC) 
curve and the area under the ROC curve (AUC), which allow 
quantification of the model sensitivity and specificity.

Application of CT-Based Radiomics Towards 
Improving Renal Cancer Care: Diagnosis, 
Prognosis and Prediction of Response

Applying CT-based radiomics towards improving renal 
cancer care has two main goals: to improve clinical practice 
by providing earlier, more accurate cancer diagnosis, and 
to refine patient stratification and treatment selection 
by applying novel prognostic and predictive imaging 
biomarkers. Addressing these clinical needs often requires 

histological analysis of tumor samples; this creates 
limitations such as potential complications from these 
invasive procedures, and the inability to capture tumor 
heterogeneity (as tumor samples represent only a small 
portion of tumors). CT-based radiomics analysis aims to 
provide non-invasive tools for histological differentiation, 
tumor grading and patient survival characterization. 

A systematic review has been performed to find 
articles investigating CT-based radiomics analysis for 
RCC characterization, prognosis and response evaluation 
(more detailed methodology of the systematic review in 
Annex I). Articles were classified based on the three main 
applications: histopathology differentiation (Table 1), 
tumor grading (Table 2), genetic expression (Table 3), and 
prediction of response.

Tumor subtypes differentiation
CT-based radiomics studies in renal cancer have 

been mainly focused on differentiation of RCC subtypes 
(ccRCC, pRCC or chRCC) from benign tumors such as 
oncocytoma or angiomyolipoma3, 13-18. Renal tumors are 
widely heterogeneous and differentiating between rare 
tumor subtypes and benign tumors can be particularly 
challenging19. Therefore, the main objective of radiomics 
analysis in this application, besides the need of non-invasive 
techniques for tumor detection, is to provide support for 
differentiating the most complex subtypes. Radiomics-
based biomarkers could be key support tools in medical 
decision-making, as different subtypes of RCC entail 
heterogeneous prognosis, genetic expression and response 
patterns to treatment. In this regard, Li20 developed a CT-
based radiomics multiphasic study for differentiating 
ccRCC (an aggressive cancer with poor outcome) from 
non-ccRCC. The CT-based radiomics signature was able to 
classify ccRCC from non-ccRCC with an accuracy of >90% 
in both training and validation cohorts. They also showed 
that the radiomics-phenotype correlated with the von 
Hippel-Lindau (VHL) gene mutation, a key ccRCC driver. 

The diagnostic capabilities of radiomics for 
differentiating renal tumor subtypes were recently 
assessed in two meta-analyses including 10 and 30 studies 
and with Log Odds Ratio of 2.56 [95%-CI 2.01, 3.11] and 
3.17 [95%-CI 2.73, 3.62], respectively12, 21.

Tumor grading
Beyond RCC tumor subtype classification, tumor grading 

is a key factor to determine aggressiveness in ccRCC, 
the most common and lethal renal tumor19. In current 
clinical practice, tumor grade is assessed by histological 
hematoxylin and eosin (H&E) analysis of tumor biopsies. 
However, two grading systems have been defined and used 
in clinical practice and, therefore, also applied to radiomics 
modeling first, the Fuhrman grading system and later, the 
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Study N Tumor type Treatment Study type Feature Selection Model Validation Reproducibility
Ding J 
(2018) 114 RCC Surgery Retrospective LASSO-logistic 

regression model
multivariate logistic 

regression model external inter-observer

Shu J 
(2018) 260 RCC NA Retrospective LASSO-logistic 

regression model
multivariate logistic 

regression model none Inter-observer
(filtering ICC>0.80)

Gill TS 
(2019) 83 RCC Surgery Retrospective Mann-Whitney U test univariate logistic

regression model none NA

He X 
(2019) 227 RCC Surgery Retrospective LASSO-logistic 

regression model
LASSO-logistic

regression model none NA

Sun X 
(2019) 227 RCC Surgery Retrospective

variance selection/
single variable 

selection/
LASSO

SVM internal Inter-observer
(filtering ICC>0.75)

Kocak B 
(2019) 81 RCC NA Retrospective univariate logistic 

regression
ANN /

logistic regression Internal Inter-observer
(filtering ICC>0.9)

Shu J 
(2019) 163 RCC Surgery Retrospective LASSO-logistic 

regression model

KNN/ logistic
regression model/

MLP/RF/
SVM

internal Inter-observer
(filtering ICC>0.8)

Nazari 
M 
(2020)

71 RCC Surgery Retrospective
LASSO-logistic 

regression model/
mRMR/T-test

multivariate logistic 
regression model/

SVM/RF
internal NA

Zhou H 
(2020) 124 RCC Surgery Retrospective MICI/RFE RF internal/

external
Inter-observer 

(filtering ICC>0.75)

Table 2. CT-based radiomics studies for predicting tumor grade in Renal Cell Carcinoma (RCC). 

ANN: Artificial Neural Network; ICC: Intraclass Correlation Coefficient; KNN: K-Nearest Neighbor; LASSO: Least Absolute Shrinkage and 
Selection Operator; MICI: maximizing independent classification information; MLP: multilayer perceptron; mRMR: minimum Redundancy 
Maximum Relevance; RF: Random Forest; RFE: Recursive Feature Elimination; SVM: Support Vector Machine

Study N Tumor 
type Treatment Study type Feature Selection Model Validation Reproducibility

Yu H
(2017) 119 RCC NA Retrospective NA SVM internal NA

Kunapuli G 
(2018) 150 RCC Surgery Retrospective RFE/SVM RFGB/RF none NA

Li ZC (2019) 170 RCC NA Retrospective mRMR/RF RF external ICC inter- and intra-observer 
(filtering ICC>0.85)

Sun XY 
(2020) 254 RCC Surgery Retrospective RFE SVM internal ICC Inter-observer 

(filtering ICC>0.9)
Li Y
(2019) 61 RCC Surgery Retrospective LASSO-logistic 

regression model SVM internal NA

Ma Y
(2020) 59 RCC Surgery Retrospective

ANOVA/Mann 
Whitney U test/
correlation test/
LASSO-logistic 

regression model

logistic 
regression 

model
internal Inter-observer ICC range 

[0.796-0.939]

Uhlig J 
(2020) 94 RCC Surgery Retrospective RFE RF internal

Inter- and intra- observer 
(mean 0.513 and 0.435, 

respectively)
Yap FY 
(2021) 735 RCC Surgery Retrospective NA AdaBoost RF internal Inter-observer

(filtering ICC>0.80)

Table 1. CT-based radiomics studies for tumor differentiation in Renal Cell Carcinoma (RCC).

ANOVA: Analysis of Variance; ICC: Intraclass Correlation Coefficient; LASSO: Least Absolute Shrinkage and Selection Operator; mRMR: 
minimum Redundancy Maximum Relevance; RF: Random Forest; RFE: Recursive Feature Elimination; RFGB: Relational Functional Gradient 
Boosting; SVM: Support Vector Machine 

WHO/ISUP (International Society of Urological Pathology) 
grading system, the most generally adopted22. 

Different tumor grades involve distinct biological 
behaviors, accounting for risk of metastatic disease, 
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survival and response to targeted therapies. Most of the 
studies focused on radiomics models for predicting tumor 
grade have used a dichotomous classification of low grade 
(I-II) (i.e., better prognosis) vs high grade (III-IV) (i.e., 
poorer prognosis)23-32. 

Gene expression studies 
With the development of high-throughput methods to 

extract and correlate multiple imaging parameters with 
genomics data, a new opportunity in medical research has 
also emerged. Radiogenomics aims to correlate imaging 
features (i.e., the imaging phenotype) with gene expression 
patterns, gene mutations, and other genome-related 
data. The most commonly mutated genes in RCC are VHL, 
BAP1, PBRM1, SETD2 and KDM5C. Several groups have 
investigated the association between radiomics signatures 
and mutations of VHL tumor suppressor genes8, 20, 33, the 
most frequent in ccRCC (80-90% of cases)34. However, a 
recent meta-analysis showed no prognostic value of VHL35. 
Since then, further radiomics studies in renal cancer have 
focused on PBRM1 and BAP1 mutation prediction6-10, which 
have shown associations with clinical outcome36. Ghosh6 
model classified BAP1 mutational status with moderate 
area (AUC) between 0.55 and 0.70. While Feng9 and Kocak10, 
improved classification capacity to an AUC of 0.77 and 
0.99, respectively. Moreover, Kocak7 developed a radiomics 
signature capable of classifying 95% of PBRM1 mutated 
samples of ccRCC. Chen8 applied a novel modeling technique 
which achieved validation accuracies between 85 and 93% 
for VHL, PBRM1 and BAP1 mutation prediction. Recently, 
Greco has shown an association between visceral adipose 
tissue (quantified in CT images) and KDM5C mutation, 
which could provide new prognostic information33.

Treatment response assessment
Scarce data is currently available about CT-based 

radiomics for predicting response to different treatments. 
Mühlbauer reported only six studies investigating 
quantitative imaging for predicting response to systemic 
therapy21, of which only two applied CT-based radiomics 
to predict response to anti-angiogenic treatment with 
limited data on radiomics model accuracy37, 38. Both articles 
implemented a univariate radiomics Cox regression model 
rather than combining different radiomics features in 
a multivariate predictive model. However, both studies 
analyzed changes between baseline and after administration 
of tyrosine kinase inhibitors (TKIs). Haider38 found two 
radiomics features (entropy and size normalized standard 
deviation) significantly associated with survival at baseline. 
Goh37 found that texture uniformity at baseline could predict 
the time to progression. Although some groups have shown 
promising results regarding the role of CT-based radiomics 
models for predicting response to immune checkpoint 
inhibitors (including a few RCC patients39, 40), limited data 
is available in exclusive RCC cohorts41. 

Challenges in Radiomics
Despite some promising results, the utility of radiomics 

models has not yet been translated into clinical practice 
due to several challenges.

Radiomics Quality Score (RQS) has been proposed as a 
standardized tool to assess the scientific integrity and the 
clinical relevance of radiomics studies by evaluating the key 
challenges in radiomics analysis42. Over the last three years, 
a few systematic reviews assessing the RQS of radiomics 
studies in renal cancer have been published12, 21, 43 showing 
a rather low quality of radiomics studies (RQS from 9.4% 
to 33.3%). Of note, the key identified deficiencies were 
related to standardization, independent validation, cost 
effectiveness and open science data sharing. Nevertheless, 
the RQS has increased in more recent publications, 
suggesting that radiomics research is improving. 

Table 3. CT-based radiomics studies for predicting tumoral gene expression in Renal Cell Carcinoma (RCC).

Study First Author
(Year) N Tumor 

type Treatment Study type Outcome Feature Selection Model Validation Reproducibility

Ghosh P (2015) 78 RCC NA Retrospective BAP1 Mann-Whitney U test RF internal NA

Kocak B (2020) 65 RCC NA Retrospective BAP1

Pearson correlation/ 
wrapper-based 

classifier-specific 
algorithm

RF internal Inter-observer 
(filtering ICC>0.9)

Feng Z (2020) 54 RCC Surgery Retrospective BAP1
Mann-Whitney U 

test/
Spearman Correlation

RF internal Inter-observer 
(filtering ICC>0.85)

Kocak B (2019) 45 RCC NA Retrospective PBRM1
wrapper-based 

classifier-specific 
algorithm

ANN/RF internal Inter-observer 
(filtering ICC>0.90)

Chen X (2018) 57 RCC NA Retrospective
VHL

PBRM1
BAP1

MCMO MCMO internal NA

ANN: Artificial Neural Network; ICC: Intraclass Correlation Coefficient; MCMO: Multi-Classifier Multi-Objective; RF: Random Forest



Ligero M, Bernatowicz K, Perez-Lopez R. The Role of CT-Based Radiomics in Precise 
Imaging of Renal Cancer. J Nephrol Sci.2021;3(2):1-7

Journal of Nephrological Science

Page 5 of 7

In principle, radiomics analysis begins with the target 
outcome definition, most commonly searching for novel 
imaging biomarkers. In practice, this decision is largely 
based on available imaging data, which could be obtained 
directly at the institution, together with collaborators or 
downloaded from open science databases such as The 
Cancer Genome Atlas (TCGA). Most published studies rely 
on retrospective data, which include technically variable 
data, for instance, due to diverse imaging protocols, 
scanners, vendors and even variable segmentations, 
which have been shown to affect the reproducibility of 
radiomics features44-47. This prompts the necessity for 
data harmonization and standardization. Prospective data 
collection allows for standardized imaging protocol design 
improving radiomics reproducibility and comparability but 
comes with its own disadvantages of being time consuming, 
prone to selection bias and consequently leading to low 
patient numbers. Recently published consensus suggests 
developing radiomics signatures on datasets representing 
realistic diversity in disease and acquisition protocols, 
such as in retrospective cohorts, and validating them 
in prospective trials48. Large and independent study 
cohorts are needed not only for model creation, but also 
for validation, reducing the risk of over-estimated model 
performance.

In the search for large and high-quality data substantial 
efforts are required to develop infrastructures to share, 
store and curate patient data. Multi-centric trials require 
secure platforms, and the ability to communicate 
between institutional networks. The economic potential 
of introducing radiomics in clinical practice could be 
estimated by assessing the cost per quality-adjusted-life-
year42, 49, which currently remains unclear.

Clinical translation of radiomics needs acceptance 
from both the scientific and clinical communities, which 
requires replicability of the proposed tool in independent 
institutions. This can only be achieved when sufficient 
information and data is available to reproduce the model 
in an independent setting. Therefore, radiomics results 
should be supported by the thorough description of all 
methodological steps. Although there is currently no gold-
standard, standardization procedures for image processing 
and feature extraction were recently proposed by a large 
multi-center initiative50. Moreover, open science model 
and code sharing is highly recommended to facilitate 
replicability and contribute to the prompt progress in the 
field. 

Conclusions 
Although medical imaging has been the foundation of 

renal tumor detection and follow-up for decades, to date, 
observer-dependent evaluation has been a constraint of 
accurate tumor characterization and imaging biomarker 

development towards precision medicine. Nevertheless, 
advances in computational medical image analysis allow 
for large- and small-scale tumor feature quantification 
using automatically extracted data characterization 
algorithms (radiomics). Radiomics features provide 
substantial amount of information about the tumor 
intensity, shape and texture. The application of machine 
learning analysis to radiomics facilitates the identification 
of underlying imaging patterns that may be, otherwise, 
not obvious, providing an excellent tool for improved 
imaging data interpretation and biomarker development. 
In particular, radiomics analysis of multi-phase CT, the 
most extensively used imaging technique for renal cancer 
diagnosis and follow-up, offers enormous promise as an 
excellent alternative for accurate, safe, and non-invasive 
renal cancer characterization. As a matter of fact, dozens of 
studies on CT-based radiomics applications in renal cancer 
have been published over the last decade. In this review we 
have summarized the main studies in this regard. 

Most of the research on radiomics-based models applied 
to renal cancer has been focused on lesion characterization 
(benign vs malignant) and tumor grading. Although still 
scarce, a few studies have also shown promising results 
regarding the role of CT-based radiomics in treatment 
selection. Moreover, accounting for the high spatial 
and temporal heterogeneity of renal tumor, CT-based 
radiogenomics have great potential to facilitate a deeper 
understanding of tumor biology, as Li20 demonstrated by 
correlating a CT-based radiomics phenotype with Von-
Hippel Lindau gene mutation.

Despite the considerable excitement resulting from the 
first ever studies in radiomics, there remains an awareness 
of its flaws in reproducibility, largely due to the variety 
of image acquisition and processing protocols. Different 
approaches have been considered in order to ameliorate 
radiomics variability, such as, non-reproducible radiomics 
feature filtering or the application of post-image acquisition 
correction models. These methods expand the potential of 
CT-based radiomics implementation in retrospective and 
prospective multi-center large-scale studies, allowing for 
achieving meaningful generalizable CT-based radiomics 
assays for supporting medical decisions in clinical practice. 
Moreover, the lack of adherence to the standardized 
radiomics analysis methods defined by the image 
biomarker standardization initiative (IBSI)50 has precluded 
generalization and clinical qualification of radiomics-based 
biomarkers also in renal cancer. 

All in all, although the field of radiomics is still in its 
infancy and continuously evolving, some of the studies 
presented here show promising applications of radiomics 
analysis towards a more precise and earlier renal cancer 
detection, tumor characterization, patient stratification and 
treatment selection. Furthermore, integrating radiomics 
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with clinical, molecular and genomic data may allow 
successful design of even more accurate models. Despite 
further prospective studies being needed to validate and 
clinically qualify these novel biomarkers, precise radiomics 
quantification opens a new paradigm in medical imaging 
interpretation and exploitation, likely providing new tools 
to support medical decisions and, ultimately, improving 
renal cancer patient care.

Supplementary I: Systematic Review
The systematic review was performed following the 

PRISMA guidelines51. PubMed electronic database was 
searched from January 1st, 2014 to May 1st, 2021 for original 
English articles investigating CT-based radiomics analysis 
in cancer applications with the search term (radiomics 
OR radiogenomics) AND (CT NOT PET) AND (Tumor OR 
Cancer OR Oncology). This search was performed using the 
new and the legacy version of PubMed. Both searches have 
been merged afterwards to include the maximum number 
of articles. The resulting database was filtered by renal cell 
carcinoma (RCC). The included original studies met the 
PICOS criteria51: Population – treated patients with cancer 
and including N>20, Intervention – CT-radiomics analysis, 
Control – standard of care, Outcome– cancer diagnosis, 
prognosis or prediction, Study design – Retrospective 
and prospective observational studies. One article was 
excluded because the number of patients was lower than 
20; 4 articles were using qualitative features instead of 
quantitative engineered features; 1 did not implement 
machine learning algorithms and 2 were reviews. 
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